General Chemistry (CH101): Chemistry around Us

Department of Chemistry

KAIST

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

©Shutterstock/Valentyn Volkov

Nutrition Chapter 11

Food that we eat

Why do we need to eat?

- Energy source to power muscle, to send nerve impulses, and to transport molecules

- Food serves as the raw materials (bone, DNA, blood cells, enzymes, and hair)

- Food supplies nutrients essential for metabolism

Why do we need to drink WATER?

-Plays a role as a reactant, a product, a solvent, a coolant, and thermal regulator

- 60% of human body

You are what you eat

EAT yesterday?

Eating is not simply filling your stomach!

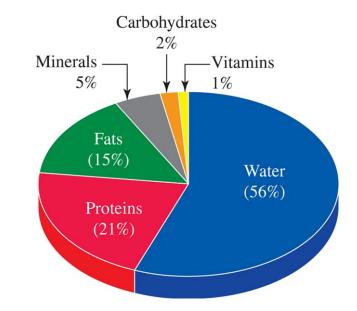
It is possible to eat to the point of being **overweight**, and still be **malnourished**!

-Malnutrition: Energy may be adequate but lacking in proper nutrients -Undernourishment: Caloric intake is insufficient to meet metabolic needs

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Nutrition	Facts
8 servings per container Serving size	2/3 cup (55g)
Amount per serving	220
Calories	230 % Daily Value*
Total Fat 8g	10%
Saturated Fat 1g	5%
Trans Fat 0g	
Cholesterol Omg	0%
Sodium 160mg	7%
Total Carbohydrate 37g	13%
Dietary Fiber 4g	14%
Total Sugars 12g	
Includes 10g Added Sugars	20%
Protein 3g	
Vitamin D 2mcg	10%
Calcium 260mg	20%
Iron 8mg	45%
Potassium 235mg	6%

Macronutrients: fats, carb, proteins


Minerals: in lower conc. but essential

Vitamins: percent = recommended daily requirement

These are all chemicals (organic or "natural")

You are what you eat

Food	Water	Fat	Carbohydrate	Protein
white bread	37	4	48	8
2% milk	89	2	5	3
chocolate chip cookies	3	23	69	4
peanut butter	1	50	19	25
sirloin steak	57	15	0	28
tuna fish (canned	63	2	0	30
black beans (cooked)	66	<1	23	9

Composition of the human body (we are more like steak than chocolate chip!)

YOU ARE WHAT YOU EAT!

How many kilograms of food will a person (70 kg) eat in their lifetime?

🍓 You

How many kilograms of food will a person (70 kg) eat in their lifetime?

ChatGPT

Calculating the exact amount of food a person will consume in their lifetime is a complex task and can vary based on numerous factors such as dietary habits, metabolism, and lifespan. However, I can provide a rough estimate.

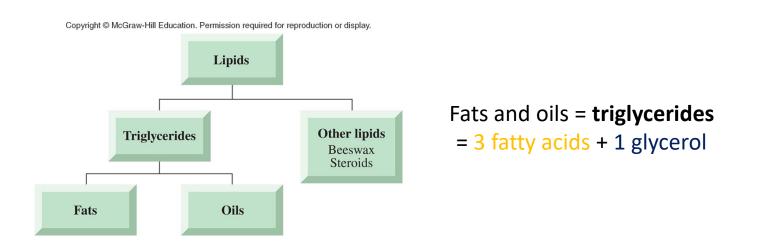
On average, an adult consumes around 2,000 to 2,500 calories per day. Let's use the lower end of this range for a conservative estimate. The caloric content of food is approximately 7 calories per gram. Therefore, a person consumes about 7,000 grams (7 kg) of food per day.

Assuming a lifespan of 70 years, the rough estimate for the total food consumption would be:

7 kg/day * 365 days/year * 70 years \approx 178,850 kg

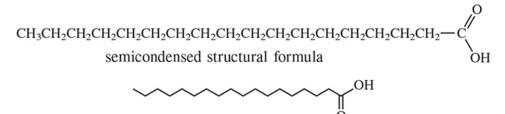
So, a rough estimate suggests that a person might consume around 178,850 kilograms of food in their lifetime. Keep in mind that this is a simplified calculation and actual consumption can vary widely.

Lipids

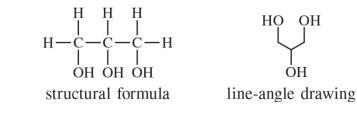


Fats: imparts a desirable flavor and texture (ice cream, butter, cheese, cakes...)

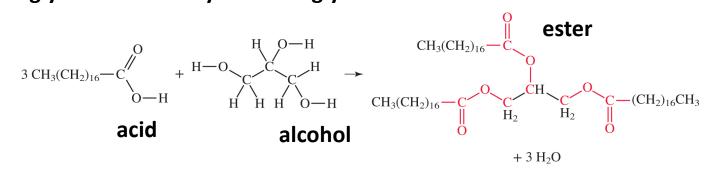
Oils: cooking oil, olive oil, peanut oil,,,,


→ Many oils (plant origin) share many of the properties of animal-based fats (but oils are liquid at rt, unlike fats)

Lipids

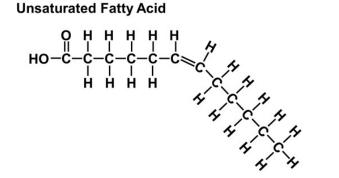

- Fatty acids: a long hydrocarbon chain + a carboxylic acid group (greasiness) (-COOH)

condensed structural formula



- Glycerol: Three –OH groups (sticky and syrupy liquid; soaps, lotions)

- Triglycerides = 3 fatty acids + 1 glycerol


Triglycerides

The properties of a fat or oil = determined by the fatty acids incorporated

Saturated Fatty Acid

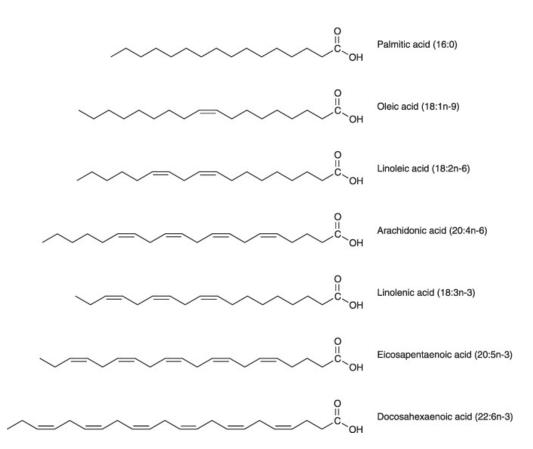
No double bond (saturated with hydrogen)

Unsaturated Fatty Acid

One or more C=C double bond

All three fatty acids in a triglycerides can be different

 \rightarrow Many possibilities and properties \rightarrow fats, oils.....


Triglycerides

Name	Number of C Atom s per Molecule	Number of C=C Double Bonds per Molecule	Melting Point (°C)
Saturated Fatty Acids			
capric acid	10	0	32
lauric acid	12	0	44
myristic acid	14	0	54
palmitic acid	16	0	63
stearic acid	18	0	70
Unsaturated Fatty Acids			
oleic acid	18	1	16
linoleic acid	18	2	-5
linolenic acid	18	3	-11

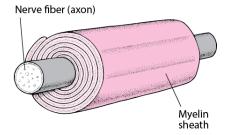
Saturated = more carbon \rightarrow higher MP Unsaturated = more C=C \rightarrow less MP

Many different properties \rightarrow differ in how they affect your health!

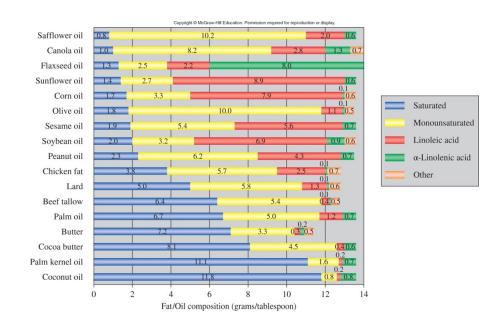
Provide a rationale for decreasing meting points of the fatty acids with increasing degrees of unsaturation

Fats: Good? or Bad?

Fats = high calories fuel

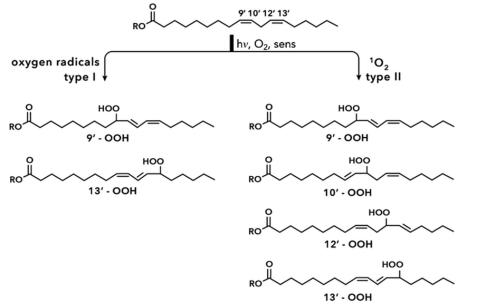

- intensify certain flavors (almost every dessert)

- insulation retaining body heat


- cushion internal organs

- cell membrane and nerve sheaths

Fortunately, our bodies can synthesize almost all fatty acids, except linolenic acid


linolenic acid

= essential but plenty in many foods

Oils and fats contain different composition of fatty acids

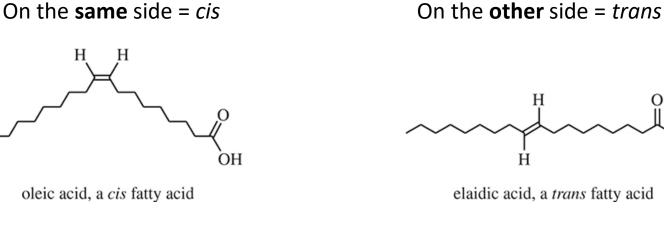
Fats: Good? or Bad?

Drawback of unsaturated fatty acid = easily oxidized by oxygen

- rancid odor over time

- "off-flavor"

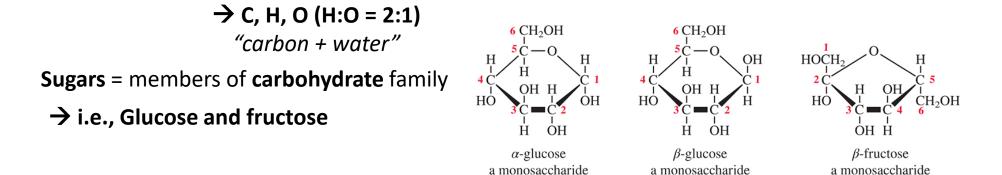
-can be advantageous in frying, though.

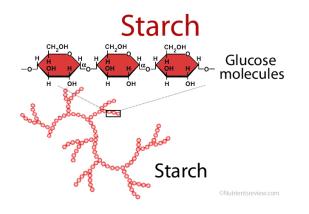

Second batch frying is better than the first batch. Used oil contains oxidized oil which is a surfactant! That help oil make better contact with food and water

Role of chemists

OН

Trans fat

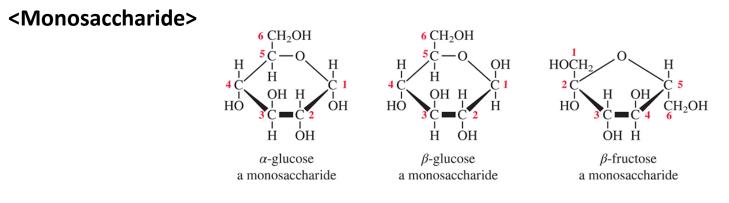

Most natural unsaturated fatty acid = *cis* (*a plus in a healthy diet*)


Trans fats \rightarrow raise the level of "bad" cholesterol in the blood - "straight" hydrocarbon \rightarrow tend to pack well together \rightarrow solidify well

Eating *trans* fats = increased risk of heart disease Eating *cis* fats = decreased the risk Eating saturated fat = increased it slightly

CUATION!! = "zero grams trans fat" label means <0.5 gram trans fat per serving

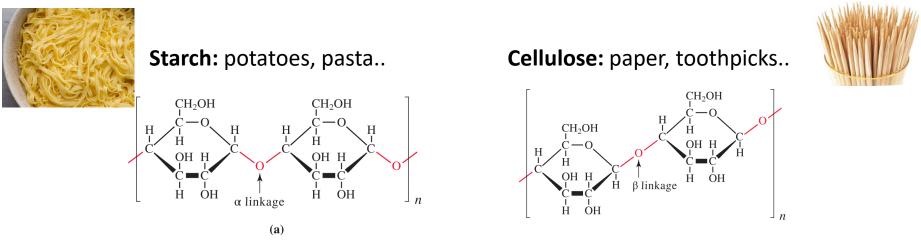
Carbohydrates (from candy to bread)



Starch = Polymer of glucose

- found in grains, potatoes, and rice
- lacks a sweet taste
- takes a bit to digest
- provide energy to the cells in our bodies

Sugars



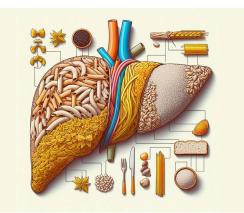
All three sugars have $C_6H_{12}O_6$, but different structures = *isomers* (Glucose/fructose = easier to distinguish) (a-glucose/b-glucose = difficult)

Polysaccharides

= Polymers made up of thousands of monosaccharide units

The subtle difference in how they are connected makes a significant difference

Many mammals (including humans) cannot digest the beta linkage, but the alpha linkage \rightarrow we eat potatoes but cannot dine on grass or trees

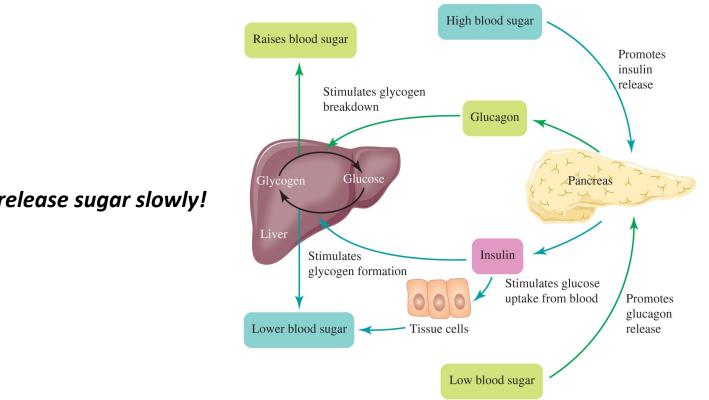

Goats, cows, sheep, and termites can break down cellulose → Their digestive tracts contain <u>bacteria</u> that decompose cellulose into glucose

Polysaccharides

= Polymers made up of thousands of monosaccharide units

Glycogen: similar to starch in structure, but loner and more branched.

	Callulana	Sta	rch	Chusenen	
	Cellulose	Amylose	Amylopectin	Glycogen	
Source	Plant	Plant	Plant	Animal	
Subunit	β-glucose	a-glucose	a-glucose	a-glucose	
Bonds	1-4	1-4	1-4 and 1-6	1-4 and 1-6	
Branches	No	No	Yes (~per 20 subunits)	Yes (~per 10 subunits)	
Diagram	ౖ	6-5-6-6			
Shape		7000	ALL	ZX.	


It accumulates in muscles and liver \rightarrow quick source of internal energy (vitally important!)

In diet books, "good carb" and "bad carb"

"Bad" carb = quickly increase blood sugar \rightarrow insulin \rightarrow formation of glycogen (store)

If the stored sugar is not used immediately, it's converted into fat and stored in your cell!

"Low-carb" diet \rightarrow low blood sugar \rightarrow glucagon \rightarrow use of stored glucose! -Also, consumption of proteins promotes glucagon release

"Good" carb should release sugar slowly!

"Added" sugar

<u>We all love sweetness \rightarrow We are eating too much sugar!</u>

Does it matter which sugar you consume? As we discussed, **polysaccharides** can be better than **simple sugars**

Sugar in foods = natural sugar in food + added sugar by manufacturers

Amount Per Se	rving		
Calories 230	Ca	lories fron	n Fat 72
		% Daily	Value*
Total Fat 8g			12%
Saturated Fat	1g		5%
Trans Fat 0g			
Cholesterol Omg	3		0%
Sodium 160mg			7%
Total Carbohyd	Irate 37g		12%
Dietary Fiber	4g		16%
Sugars 12g			
Protein 3g			
Ū.			
Vitamin A			10%
Vitamin C			8%
Calcium			20%
fron			45%
Percent Daily Values Your daily value may your calorie needs.			
Total Fat	Less than	65g	2,500 80g
Sat Fat	Less than	20g	25g
		300mg	300mg
	Less than		
Cholesterol Sodium Total Carbohydrate	Less than Less than	2,400mg 300g	2,400mg 375g

Nutrition Fa	octs
8 servings per container Serving size 2/3 c	up (55g)
Amount per serving Calories	230
% Da	ily Value*
Total Fat 8g	10 %
Saturated Fat 1g	5%
Trans Fat 0g	
Cholesterol Omg	0%
Sodium 160mg	7%
Total Carbohydrate 37g	13%
Dietary Fiber 4g	14%
Total Sugars 12g	
Includes 10g Added Sugars	20%
Protein 3g	
Vitamin D 2mcg	10%
Calcium 260mg	20%
Iron 8mg	45%
Potassium 235mg	43%
Potassium 255mg	0%
* The % Daily Value (DV) tells you how much a m a serving of food contributes to a daily diet. 2,000 a day is used for general nutrition advice.	

(b)

13% of the total Calories consumed are

from added sugars

= 17~22 teaspoons of added sugar daily!!!

Sugar substitutes

High-fructose corn syrup (HFCS): used to sweeten many foods and drinks → Free monosaccharides in HFCS provide better flavor, stability, freshness, color, texture...

HFCS is really sweet \rightarrow public concern!

Lactose	Maltose	Glucose	Honey	Sucrose	Fructose
16	32.5	74.3	97	100	173

Scientific studies say "metabolically, HFCS appears to be similar to sucrose in our bodies"

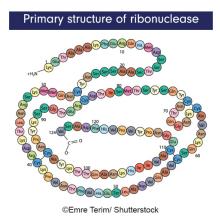
NONETHELESS, due to public concerns Yoplait, Gatorade, PepsiCo, and Hershey's phased out the use of HFCS, replacing it with sucrose

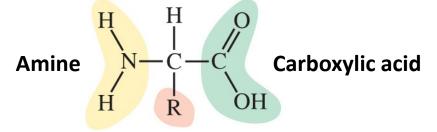
	<artifi< th=""><th>cial sweeteners></th><th>*w</th><th>nen sucrose =</th><th>= 1</th></artifi<>	cial sweeteners>	*w	nen sucrose =	= 1
Acesulfame potassium	Aspartame	Neotame	Saccharin	Sucralose	
200	200	7,000 to 13,000	300	600	

Aspartame = same Calories per gram as sucrose = 200X sweet = 1/200 Calories... = ~0 Cal

a. Propose a reason why glucose, fructose, and sucrose differ in their degree of sweetness

https://youtu.be/FaBFyEa8-el


b. Explain why these sugars are almost identical in their Calories per gram.


Lactose	Maltose	Glucose	Honey	Sucrose	Fructose
16	32.5	74.3	97	100	173

Proteins

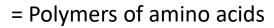
-Components in hair, skin, and muscle
- Transport oxygen, nutrients, and minerals
- Enzymes, and many hormones.

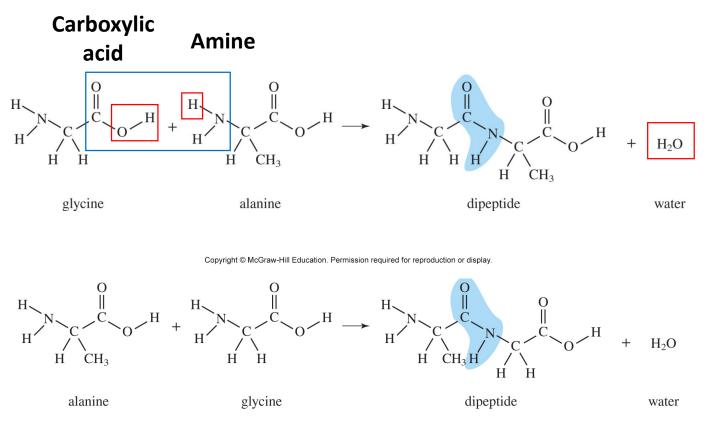
Protein = a polymer of **amino acid** (monomer) = polypeptide



Side chain → It governs the chemical properties

-Polar: hydrophilic (bonds with water) -Nonpolar: hydrophobic (repelled by water)


Amino acids



Polar side chains

- Ionic/H-bonds
- Acidic (acids) or basic (amines)
- Can be charged (i.e., Lys

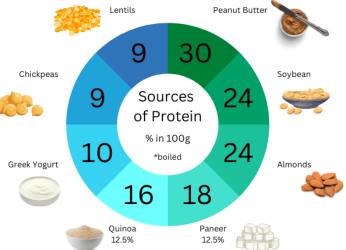
Peptides

"the order of amino acid residues in a peptide makes a difference!" A particular protein structure depends on the <u>types</u> of amino acids and the <u>sequence</u> of it

i.e., (a, e, t) \rightarrow eat, ate, tea

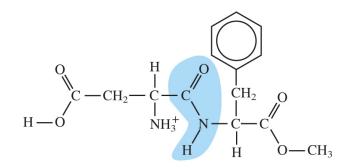
Essential amino acids

= required for protein synthesis, but are **not synthesized** by human body (9 amino acids out of 20)


Normally, the body does not store a reserve supply of protein → Must be eaten regularly (The balance matters!!!)

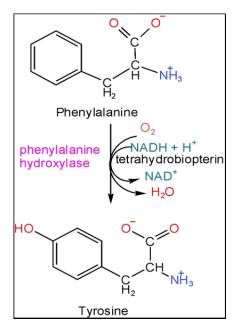
Sufficient quantity and suitable quality of proteins

- Beef, fish, and poultry = the same proportions of essential amino acids with the one in human
- Most people depend on grains and vegetable crops = some can be lacking = DIVERSIFY!


(i.e., Mexican diet tend to be rich in corn \rightarrow low in tryptophan)

Vegetarians → must use "protein complementarity"
i.e., <u>Peanut butter sandwich</u>:
Bread = lysine↓/methionine↑
peanut = lysine ↑/methionine↓

Aspartame


? + ? = aspartame

Aspartame (a sugar substitute) is a DIPEPTIDE!

-One of the most highly studied food additives

- safe for the vast majority of consumers

Phenylketonuria (genetically unable to process Phe)

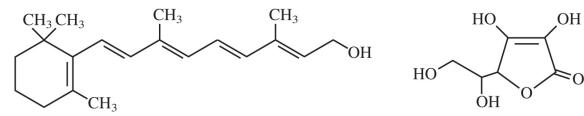
 \rightarrow Phe in blood rises \rightarrow Phe converts to phenylpyruvic acid

 \rightarrow severe mental retardation

Thus, phenylketonurics must put on a diet severely limited in Phe

(still need a minimum amount of it)

Phenylalanine= an essential amino acid= converted into tyrosine


\rightarrow No Diet Coke!!

= needed only in miniscule amounts but still are essential

²Good for health, proper metabolic functioning, and disease prevention...

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

vitamin A, a lipid-soluble vitamin

vitamin C, a water-soluble vitamin

Vitamin A, D, E, and K (fat-soluble)

fat soluble vita

-stored in cells rich in lipids -if swallowed in excess, it's toxic! Vitamin B, and C (water-soluble) -excreted in the urine rather than stored -need to eat frequently

*a balanced diet provides the necessary vitamins except vitamin D, which is synthesized in the skin by using sunlight

** Many vitamins are coenzymes

= work in conjunction with enzyme to enhance their activity

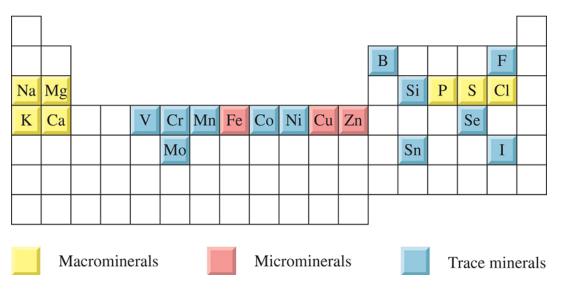
Copyright @ McGraw-Hill Education. Permission required for reproduction

©2018 American Chemical Societ

Minerals

= ionic compounds

- Macrominerals: Ca, P, Cl, K, S, Na, and Mg


 \rightarrow Necessary for life. Need to be ingested daily (typically 1~2 g)

- Microminerals: Fe, Cu, and Zn

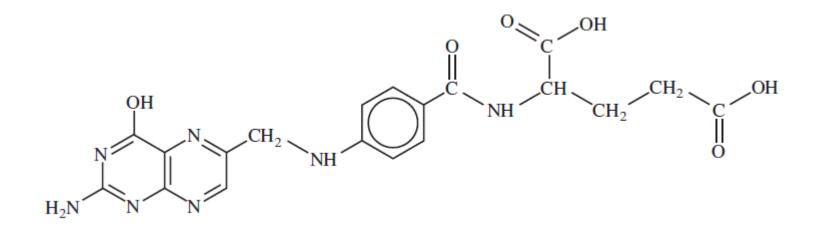
 \rightarrow requires lesser amounts. (i.e., Fe \rightarrow a component of hemoglobin)

- Trace minerals: I, F, Se, V, Cr, Mn, Co, Ni, Mo, B, Si, and Sn

ightarrow usually in microgram (ug) quantity. Still required for good health

(Calcium)

- Ca + P + F \rightarrow bone
- blood clotting
- muscle contraction
- transmission of nerve impulses


(Potassium)

- you need to ingest 2 g of $K^{\scriptscriptstyle +}$ a day
- abundant in oranges, bananas, and tomatoes

This vitamine (folic acid) is particularly important for pregnant women.

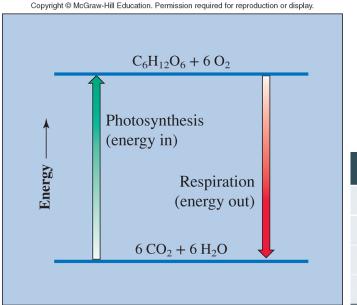
Do you expect that it would be soluble in fat? Or in blood stream (water)?

Explain your reasoning

Can you turn orange from eating large amounts of carrots due to water-soluble or fat-soluble components in these food?

"Megadoses of vitamin C"

Share your experience if you have any.


Vitamin C megadosage

Article Talk

From Wikipedia, the free encyclopedia

Vitamin C megadosage is a term describing the consumption or injection of vitamin C (ascorbic acid) in doses well beyond the current United States Recommended Dietary Allowance of 90 milligrams per day, and often well beyond the tolerable upper intake level of 2,000 milligrams per day.^[1] There is no scientific evidence that vitamin C megadosage helps to cure or prevent cancer, the common cold, or some other medical conditions.^{[2][3]}

Food for energy

In addition to **supplying** sufficient energy, **regulating the energy-release is critical** (without it, your body temp would fluctuate)

Table 11.7	Average Energy Content of Macronutrients			
Macronutrient	Energy Content (Cal/g)			
fats		9		
carbohydrates		4		
proteins		4		

 $C_{12}H_{24}O_2$ (lauric acid) +17 $O_2 \rightarrow 12 CO_2 + 12 H_2O + 8.8 Cal/g$

 $C_{12}H_{22}O_{11}(sucrose) + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O + 3.8 Cal/g$

Both compounds have the same number of C & H (nearly) \rightarrow C & H combine with oxygen to form CO₂ and H₂O \rightarrow More oxygen is required to burn fat \rightarrow More energy is released overall

In the language of chemistry = the sugar is more **"oxidized"** than the fatty acid

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 11.8	Estimated Calorie Requirements (United States)						
ACTIVITY LEVEL							
Age (yr)	Sedentary* Moderately Active ⁺ Act						
Females							
14–18	1800	2000	2400				
19–30	2000	2000-2200	2400				
31–50	1800	2000	2200				
51+	1600	1800	2000-2200				
Males							
14–18	2200	2400-2800	2800-3200				
19–30	2400	2600–2800	3000				
31–50	2200	2400-2600	2800-3000				
51+	2200	2200-2400	2400–2800				

*Sedentary means a lifestyle that includes only the light physical activity associated with typical day-to-day life.

⁺*Moderately active* means a lifestyle that includes physical activity equivalent to walking about 1–3 miles per day at 3–4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.

[‡]Active means a lifestyle that includes physical activity equivalent to walking more than 3 miles per day at 3–4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.

Source: Dietary Guidelines for Americans USDA 2005

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 11.9	Ener	rgy Expenditure for Common Physical Activities*					
Moderate Physical Acti	vity	Cal/h	Vigorous Physical Activity	Cal/h			
hiking		370	running (10 mph)	1050			
light gardening/yard wo	rk	245	heavy yard work	440			
dancing		315	(chopping wood)	540			
(ballroom, fast)			swimming (freestyle laps)	510			
golf (walking, carrying cl	ubs)	245	aerobics	480			
bicycling (<10 mph)		279	bicycling (12–14 mph)	559			
walking (3.5 mph)		196	jogging (5 mph)	490			
weight lifting (light workout)		140	weight lifting (vigorous workout)	350			
stretching		105	basketball (competitive game)	490			

*Values taken from CalorieLab, and include both resting metabolic rate and activity expenditure for a 154-pound (70-kg) person. Calories burned per hour are higher for persons heavier than 154 pounds and lower for persons who weigh less.

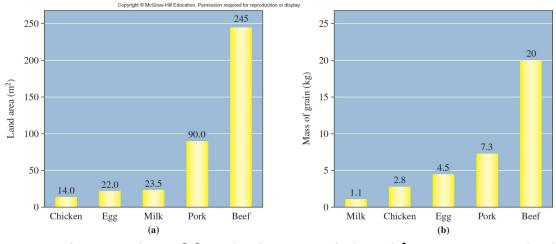
Food safety

Unhealthy eating = 400,000~500,000 deaths occur every year in the US

Food poisoning = 3000~150,000 cases (bacteria, viruses, parasites, and chemical toxins..)

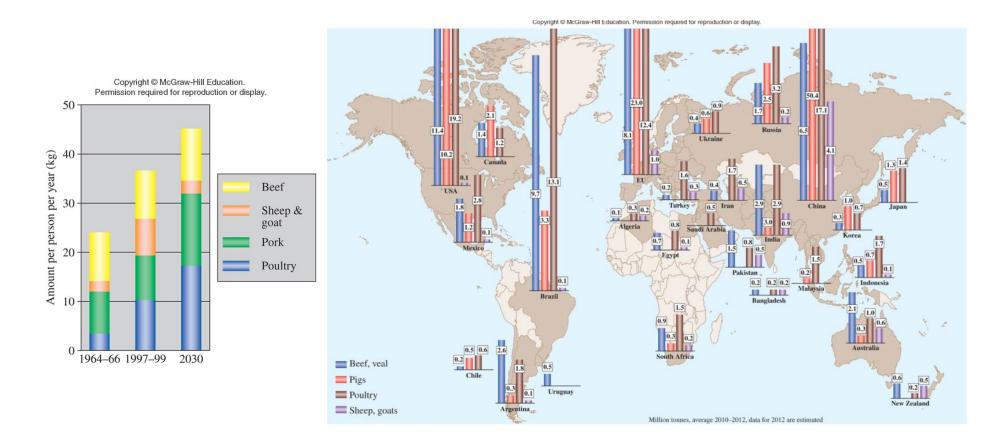
Accumulative effect is more severe!

→ Processing, transportation, handling, and storage should be processed carefully


Food surveillance = random samples are taken from grocery stores
Total diet survey = Samples of consumers' meals are analyzed for contaminants
Enforcement sampling = Samples are taken when there is concern that an issue may exist

Legislation and monitoring are more complex in our globalized society → Rigorous testing is required at major ports of entry

Real costs of food production


1 kg of beer on the table = required 15,000 L of water

It's not that cattle drink this much water

To bring 1kg of food, this much land/grain is needed

Real costs of food production

In 2030, we need 358 kg of grain per person * 8 billion people = **2.9 trillion kg** (The world grain production = **2.3 trillion kg** in 2017)

We need to find a way to overcome the shortfall!

The carbon footprint of foods

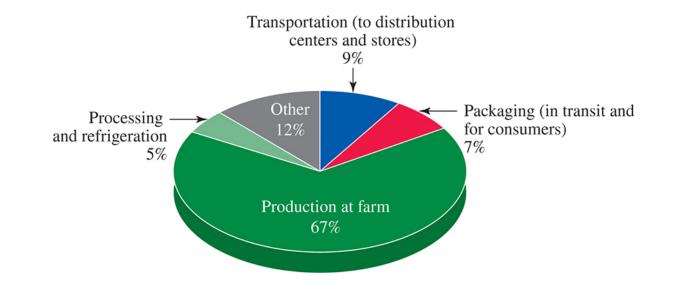
Copyright © McGraw-Hill Education. Permission required for reproduction or display

©Shutterstock/Arina P Habich

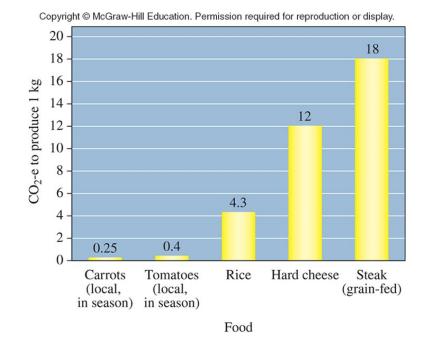
Eating locally vs "Food miles"

- **1.** Eating local means more for the local economy.
- 2. Locally grown produce is fresher and tastes better.
- 3. Locally grown fruits and vegetables have longer to ripen.
 - 4. Buying local food keeps us in touch with the seasons.
- 5. Supporting local providers supports responsible land development.

"Food miles"


Food from your back yard vs Food from another country

That results in varying degree of energy use and atmospheric emissions


Would it help if all food were produced locally?

NOT NECESSARILY!!

(growing tomatoes in a greenhouse can be worse than transporting tomatoes)

Carbon footprint

The majority of the carbon footprint comes from food production on farm

i.e., operating farm machinery, fertilizer stimulates microbes, livestock produces methane..

<u>Replacing a single meat-based meal with a vegetarian option</u>
 → Equivalent of driving about 1200 fewer miles annually

Nitrogen footprint

Source: Photo by George E. Marsh, NOAA, Dept. of Commerce

In previous decades, a tillage rotation was common

However, frequent plowing exposes the soil to erosion.

 \rightarrow <u>Agricultural practices have now shifted toward continuous cropping</u>

Higher rates of nitrogen based <u>fertilizer</u> are required to maintain high crop yield!

contains N, P, K, S, C, H

Why do we need nitrogen in fertilizer, while it's abundant in the air?

Reactive nitrogen

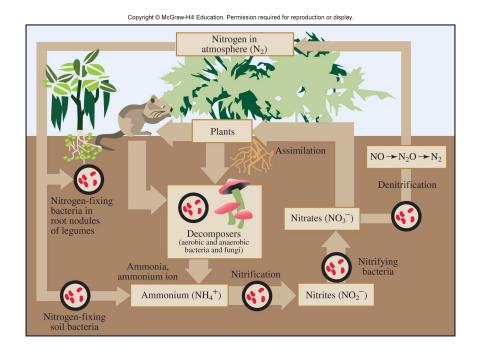
In order to grow, plants need <u>"reactive nitrogen"</u>

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table 11.13	Some Reactive Forms of Nitrogen*	
Name		Chemical Formula
nitrogen monoxide (nitric oxide)		NO
nitrogen dioxide		NO ₂
dinitrogen monoxide (nitrous oxide)		N ₂ O
nitrate ion		NO ₃
nitrite ion		NO ₂ -
nitric acid		HNO ₃
ammonia		NH ₃
ammonium ion		NH_4^+

*These forms of nitrogen all are naturally occurring.

Thus, N_2 in the atmosphere is required to be converted to those reactive molecules!


Nitrogen cycle

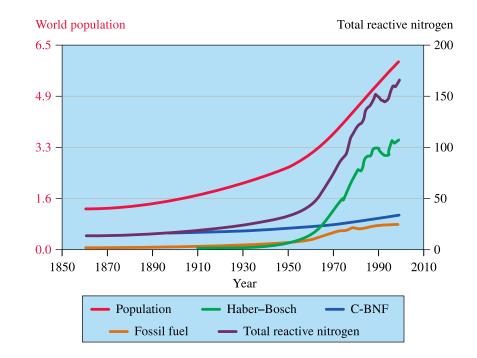
Nitrogen-"fixing" (removing) bacteria:

- it removes N_2 from the air and converts it to NH_3
- the bacteria live on or near the roots of alfalfa, beans, and peas

Two forms of reactive nitrogen that most plants can absorb

These molecules are needed for plant

ightarrow Bacteria in the soil cannot supply


for the continuous cropping

- ightarrow Fertilizers are required
 - a nitrogen-rich deposit from birds
 - <u>Haber-Bosch</u> >> large-scale production

 $2\mathbb{N}_2 + 3\mathbb{H}_2 \longrightarrow 2\mathbb{N}\mathbb{H}_3$

Nitrogen Hydrogen Ammonia

Nitrogen supply and world population

Total reactive nitrogen = fossil fuels (energy production) + fertilization (food production) → Parallel the growth in world population!

However, the reactive forms of nitrogen can be....
- increasing the acidity of the atmosphere
- increasing the concentration of a greenhouse gas (N2O)
- a pollutant of a water supply

Based on the topics discussed in this chapter, assess your food choices yesterday.

How would you want to change it?

-Can human utilize the bacteria that digest cellulose? Adv and disadv? -List five of unregulated food additive and decribe the purpose for them and the claimed health implications.

-Do supplementary vitamin/mineral pills helpful? Discuss pros and cons -Does drinking "protein shake" help building your muscle? What's in there? And how does it work?